Inhibition of hypoxia-induced calcium responses in pulmonary arterial smooth muscle by acetazolamide is independent of carbonic anhydrase inhibition.
نویسندگان
چکیده
Hypoxic pulmonary vasoconstriction (HPV) occurs with ascent to high altitude and can contribute to development of high altitude pulmonary edema (HAPE). Vascular smooth muscle contains carbonic anhydrase (CA), and acetazolamide (AZ), a CA inhibitor, blunts HPV and might be useful in the prevention of HAPE. The mechanism by which AZ impairs HPV is uncertain. Originally developed as a diuretic, AZ also has direct effects on systemic vascular smooth muscle, including modulation of pH and membrane potential; however, the effect of AZ on pulmonary arterial smooth muscle cells (PASMCs) is unknown. Since HPV requires Ca2+ influx into PASMCs and can be modulated by pH, we hypothesized that AZ alters hypoxia-induced changes in PASMC intracellular pH (pH(i)) or Ca2+ concentration ([Ca2+](i)). Using fluorescent microscopy, we tested the effect of AZ as well as two other potent CA inhibitors, benzolamide and ethoxzolamide, which exhibit low and high membrane permeability, respectively, on hypoxia-induced responses in PASMCs. Hypoxia caused a significant increase in [Ca2+](i) but no change in pH(i). All three CA inhibitors slightly decreased basal pH(i), but only AZ caused a concentration-dependent decrease in the [Ca2+](i) response to hypoxia. AZ had no effect on the KCl-induced increase in [Ca2+](i) or membrane potential. N-methyl-AZ, a synthesized compound lacking the unsubstituted sulfonamide group required for CA inhibition, had no effect on pH(i) but inhibited hypoxia-induced Ca2+ responses. These results suggest that AZ attenuates HPV by selectively inhibiting hypoxia-induced Ca2+ responses via a mechanism independent of CA inhibition, changes in pH(i), or membrane potential.
منابع مشابه
Pulmonary vasodilation by acetazolamide during hypoxia is unrelated to carbonic anhydrase inhibition.
Acute hypoxic pulmonary vasoconstriction can be inhibited by high doses of the carbonic anhydrase inhibitor acetazolamide. This study aimed to determine whether acetazolamide is effective at dosing relevant to human use at high altitude and to investigate whether its efficacy against hypoxic pulmonary vasoconstriction is dependent on carbonic anhydrase inhibition by testing other potent heteroc...
متن کاملAcetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs.
Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically trach...
متن کاملThe distribution of branchial carbonic anhydrase and the effects of gill and erythrocyte carbonic anhydrase inhibition in the channel catfish Ictalurus punctatus.
Carbonic anhydrase (CA) activity was assayed in lysed erythrocytes and in branchial cytoplasm, mitochondria and microsomes of the channel catfish, Ictalurus punctatus. Branchial CA activity was highest in the cytoplasmic fraction, but activity was very low in mitochondria and microsomes. Erythrocyte CA activity was over four-fold greater than that in the gills. Intact animals were injected with...
متن کاملBinding of Carbonic Anhydrase IX to 45S rDNA Genes Is Prevented by Exportin-1 in Hypoxic Cells
Carbonic anhydrase IX (CA IX) is a surrogate marker of hypoxia, involved in survival and pH regulation in hypoxic cells. We have recently characterized its interactome, describing a set of proteins interacting with CA IX, mainly in hypoxic cells, including several members of the nucleocytoplasmic shuttling apparatuses. Accordingly, we described complex subcellular localization for this enzyme i...
متن کاملPeripheral chemoreceptor function after carbonic anhydrase inhibition during moderate-intensity exercise.
The effect of carbonic anhydrase inhibition with acetazolamide (Acz, 10 mg/kg) on the ventilatory response to an abrupt switch into hyperoxia (end-tidal PO2 = 450 Torr) and hypoxia (end-tidal PO2 = 50 Torr) was examined in five male subjects [30 +/- 3 (SE) yr]. Subjects exercised at a work rate chosen to elicit an O2 uptake equivalent to 80% of the ventilatory threshold. Ventilation (VE) was me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 292 4 شماره
صفحات -
تاریخ انتشار 2007